Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2 Applications and Future Perspectives

نویسندگان

  • Andrzej Cichocki
  • Anh Huy Phan
  • Qibin Zhao
  • Namgil Lee
  • Ivan V. Oseledets
  • Masashi Sugiyama
  • Danilo P. Mandic
چکیده

Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions. A. Cichocki et al. Tensor Networks for Dimensionality Reduction and Large-Scale Optimization Part 2 Potential Applications and Perspectives. Foundations and Trends © in Machine Learning, vol. 9, no. 6, pp. 431–673, 2016. DOI: 10.1561/2200000067. Full text available at: http://dx.doi.org/10.1561/2200000067

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions

Machine learning and data mining algorithms are becoming increasingly important in analyzing large volume, multi-relational and multi– modal datasets, which are often conveniently represented as multiway arrays or tensors. It is therefore timely and valuable for the multidisciplinary research community to review tensor decompositions and tensor networks as emerging tools for large-scale data an...

متن کامل

Tensor Decompositions for Very Large Scale Problems

Modern applications such as neuroscience, text mining, and large-scale social networks generate massive amounts of data with multiple aspects and high dimensionality. Tensors (i.e., multi-way arrays) provide a natural representation for such massive data. Consequently, tensor decompositions and factorizations are emerging as novel and promising tools for exploratory analysis of multidimensional...

متن کامل

A survey of multilinear subspace learning for tensor data

Increasingly large amount of multidimensional data are being generated on a daily basis in many applications. This leads to a strong demand for learning algorithms to extract useful information from these massive data. This paper surveys the field of multilinear subspace learning (MSL) for dimensionality reduction of multidimensional data directly from their tensorial representations. It discus...

متن کامل

Large Margin Low Rank Tensor Analysis

We present a supervised model for tensor dimensionality reduction, which is called large margin low rank tensor analysis (LMLRTA). In contrast to traditional vector representation-based dimensionality reduction methods, LMLRTA can take any order of tensors as input. And unlike previous tensor dimensionality reduction methods, which can learn only the low-dimensional embeddings with a priori spe...

متن کامل

Emerging Optical CDMA Techniques and Applications

In this paper we present an in-depth review on the trends and the directions taken by the researchers worldwide in Optical Code Division Multiple Access (OCDMA) systems. We highlight those trends and features that are believed to be essential to the successful introduction of various OCDMA techniques in communication systems and data networks in near future. In particular we begin by giving a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Foundations and Trends in Machine Learning

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017